By Topic

Analysis of Virtualization Technologies for High Performance Computing Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Younge, A.J. ; Pervasive Technol. Inst., Indiana Univ., Bloomington, IN, USA ; Henschel, R. ; Brown, J.T. ; von Laszewski, G.
more authors

As Cloud computing emerges as a dominant paradigm in distributed systems, it is important to fully understand the underlying technologies that make Clouds possible. One technology, and perhaps the most important, is virtualization. Recently virtualization, through the use of hyper visors, has become widely used and well understood by many. However, there are a large spread of different hyper visors, each with their own advantages and disadvantages. This paper provides an in-depth analysis of some of today's commonly accepted virtualization technologies from feature comparison to performance analysis, focusing on the applicability to High Performance Computing environments using Future Grid resources. The results indicate virtualization sometimes introduces slight performance impacts depending on the hyper visor type, however the benefits of such technologies are profound and not all virtualization technologies are equal. From our experience, the KVM hyper visor is the optimal choice for supporting HPC applications within a Cloud infrastructure.

Published in:

Cloud Computing (CLOUD), 2011 IEEE International Conference on

Date of Conference:

4-9 July 2011