By Topic

Cost-Wait Trade-Offs in Client-Side Resource Provisioning with Elastic Clouds

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Genaud, S. ; CNRS, Univ. de Strasbourg, Illkirch, France ; Gossa, J.

Recent Infrastructure-as-a-Service offers, such as Amazon's EC2 cloud, provide virtualized on-demand computing resources on a pay-per-use model. From the user point of view, the cloud provides an inexhaustible supply of resources, which can be dynamically claimed and released. This drastically changes the problem of resource provisioning and job scheduling. This article presents how billing models can be exploited by provisioning strategies to find a trade-off between fast/expensive computations and slow/cheap ones for indepedent sequential jobs. We study a dozen strategies based on classic heuristics for online scheduling and bin-packing problems, with the double objective of minimizing the wait time (and hence the completion time) of jobs and the monetary cost of the rented resources. We simulate these strategies on real grid workloads in two cases. First, we use the workloads as a whole, which is representative of a large community of users sharing some common resources. Second, we use the workloads extracted for each individual user. These lighter workloads correspond to users submitting work independently from others and paying for their own resources. Our findings show that on large workloads, a little budget increase allows to achieve optimal wait time, while trade-off heuristics may be largely beneficial for individual users with lighter workloads.

Published in:

Cloud Computing (CLOUD), 2011 IEEE International Conference on

Date of Conference:

4-9 July 2011