By Topic

Joining Movement Sequences: Modified Dynamic Movement Primitives for Robotics Applications Exemplified on Handwriting

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Kulvicius, T. ; Dept. for Comput. Neurosci., Georg-August-Univ. Gottingen, Gottingen, Germany ; Ning, K. ; Tamosiunaite, M. ; Worgo╠łtter, F.

The generation of complex movement patterns, in particular, in cases where one needs to smoothly and accurately join trajectories in a dynamic way, is an important problem in robotics. This paper presents a novel joining method that is based on the modification of the original dynamic movement primitive formulation. The new method can reproduce the target trajectory with high accuracy regarding both the position and the velocity profile and produces smooth and natural transitions in position space, as well as in velocity space. The properties of the method are demonstrated by its application to simulated handwriting generation, which are also shown on a robot, where an adaptive algorithm is used to learn trajectories from human demonstration. These results demonstrate that the new method is a feasible alternative for joining of movement sequences, which has a high potential for all robotics applications where trajectory joining is required.

Published in:

Robotics, IEEE Transactions on  (Volume:28 ,  Issue: 1 )