Notification:
We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

An Investigation of Dehazing Effects on Image and Video Coding

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Gibson, K.B. ; Dept. of Electr. & Comput. Eng., Univ. of California at San Diego, La Jolla, CA, USA ; Vo, D.T. ; Nguyen, Truong Q.

This paper makes an investigation of the dehazing effects on image and video coding for surveillance systems. The goal is to achieve good dehazed images and videos at the receiver while sustaining low bitrates (using compression) in the transmission pipeline. At first, this paper proposes a novel method for single-image dehazing, which is used for the investigation. It operates at a faster speed than current methods and can avoid halo effects by using the median operation. We then consider the dehazing effects in compression by investigating the coding artifacts and motion estimation in cases of applying any dehazing method before or after compression. We conclude that better dehazing performance with fewer artifacts and better coding efficiency is achieved when the dehazing is applied before compression. Simulations for Joint Photographers Expert Group images in addition to subjective and objective tests with H.264 compressed sequences validate our conclusion.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )