By Topic

A PLS-Based Statistical Approach for Fault Detection and Isolation of Robotic Manipulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muradore, R. ; Dept. of Comput. Sci., Univ. of Verona, Verona, Italy ; Fiorini, P.

In this paper, a statistical approach to fault detection and isolation (FDI) of robot manipulators is presented. It is based on a statistical method called partial least squares (PLS) and on the inverse dynamic model of a robot. PLS is a well-established linear technique in process control for identifying and monitoring industrial plants. Since a robot inverse dynamics can be represented as a linear static model in the dynamical parameters, it is possible to use algorithms and confidence regions developed in statistical decision theory. This approach has several advantages with respect to standard FDI modules: It is strictly related to the algorithm used for identifying the dynamical parameters, it does not need to solve at run time a set of nonlinear differential equations, and the design of a nonlinear observer is not required. This method has been tested on a PUMA 560 simulator, and results of the simulations are discussed.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:59 ,  Issue: 8 )