Cart (Loading....) | Create Account
Close category search window
 

Exploring performance, power, and temperature characteristics of 3D systems with on-chip DRAM

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jie Meng ; Electr. & Comput. Eng. Dept., Boston Univ., Boston, MA, USA ; Rossell, D. ; Coskun, A.K.

3D integration enables stacking DRAM layers on processor cores within the same chip. On-chip memory has the potential to dramatically improve performance due to lower memory access latency and higher bandwidth. Higher core performance increases power density, requiring a thorough evaluation of the tradeoff between performance and temperature. This paper presents a comprehensive framework for exploring the power, performance, and temperature characteristics of 3D systems with on-chip DRAM. Utilizing this framework, we quantify the performance improvement as well as the power and thermal profiles of parallel workloads running on a 16-core 3D system with on-chip DRAM. The 3D system improves application performance by 72.6% on average in comparison to an equivalent 2D chip with off-chip memory. Power consumption per core increases by up to 32.7%. The increase in peak chip temperature, however, is limited to 1.5°C as the lower power DRAM layers share the heat of the hotter cores. Experimental results show that while DRAM stacking is a promising technique for high-end systems, efficient thermal management strategies are needed in embedded systems with cost or space restrictions to compensate for the lack of efficient cooling.

Published in:

Green Computing Conference and Workshops (IGCC), 2011 International

Date of Conference:

25-28 July 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.