By Topic

Data-driven based 3-D fuzzy logic controller design using nearest neighborhood clustering and linear support vector regression

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Xianxia Zhang ; Shanghai Key Laboratory of Power Station Automation, Technology, School of Mechatronics and Automation, Shanghai University, Shanghai 200072, China ; Ye Jiang ; Tao Zou ; Chenkun Qi
more authors

Three-dimensional fuzzy logic controller (3-D FLC) is a novel FLC developed for spatially distributed parameter systems. In this study, we are concerned with data-based 3-D FLC design. A nearest neighborhood clustering algorithm is employed to extract fuzzy rules from input-output data pairs, and then an optimization algorithm based on geometric similarity measure is used to reduce the obtained rule base. The consequent parameters are estimated using linear support vector regression. Finally, a catalytic packed-bed reactor is taken as an application to demonstrate the effectiveness of the 3-D FLC.

Published in:

Fuzzy Systems (FUZZ), 2011 IEEE International Conference on

Date of Conference:

27-30 June 2011