By Topic

A Non-Singleton Interval Type-2 Fuzzy Logic System for universal image noise removal using Quantum-behaved Particle Swarm Optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Daoyuan Zhai ; Signal and Image Processing Institute, Ming Hsieh Department of Electrical Engineering, University of Southern California, Los Angeles, CA, 90089-2564, USA ; Minshen Hao ; Jerry M. Mendel

Removing Mixed Gaussian and Impulse Noise (MGIN) is considered to be very important in the domain of image restoration, but it is a somewhat more challenging topic than removing pure Gaussian or impulse noise. Therefore, relatively fewer works have been published in this area. This paper pro poses a Non-Singleton Interval Type-2 (IT2) Fuzzy Logic System (FLS) for MGIN removal, explains how it can be designed based on a Quantum-behaved Particle Swarm Optimization algorithm, and shows that it provides both quantitatively and visually much better results compared to other often-used non-fuzzy techniques as well as its Type-1 and singleton IT2 counterparts.

Published in:

Fuzzy Systems (FUZZ), 2011 IEEE International Conference on

Date of Conference:

27-30 June 2011