Cart (Loading....) | Create Account
Close category search window
 

Design and implementation of a 12 kW wind-solar distributed power and instrumentation system as an educational testbed for Electrical Engineering Technology students

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pecen, R. ; Electr. Eng. Technol., Univ. of Northern Iowa, Cedar Falls, IA, USA ; Nayir, A.

The main objective of this paper is to report and present design and implementation of a 12 kW solar-wind hybrid power station and associated wireless sensors and LabView based monitoring instrumentation systems to provide a teaching and research facility on renewable energy areas for students and faculty members in Electrical Engineering Technology (EET) programs at the University of Northern Iowa (UNI). This new ongoing project requires to purchase a 10 kW Bergey Excel-S wind turbine with a Power Sink II utility intertie module (208 V/240V AC, 60 Hz), eight BP SX175B 175W solar PhotoVoltaic (PV) panels, and related power and instrumentation/data acquisition hardware. A 100 ft long wind tower to house the new wind turbine is available at UNI campus. Furthermore, the electricity generated by this power station will be used as a renewable energy input for a smart grid based green house educational demonstration project to aid the teaching and research on smart grid and energy efficiency issues. 330:038 Introduction to Electrical Power/Machinery, 330:166 Adv Electrical Power Systems, 330:059/159 Wind Energy Applications in Iowa, 330:059/159 (2) Solar Energy Applications and Issues, and 330:186 Wind Energy Management are the classes that will use this proposed testbed. There are also workshops planned for the area Science, Technology, Engineering, and Mathematics (STEM) teachers as well as local farmers' education and training on wind and solar power systems. Previous workshops organized by UNI Continuing and Distance Education have been very successful. The hybrid unit contains two complete generating plants, a wind-turbine system and a PV solar-cell plant. These sources are connected and synchronized in parallel to the UNI power grid as part of laboratory activities on wind-solar hybrid power systems and grid-tie interactions. The proposed project is part of a program initiative to improve our laboratory facilities to better reflect on the current and future renewab- - le energy technologies. The proposed testbed will allow students to be educated and trained in the utilization of real-time electrical power systems and additionally will allow them to gain valuable “hand-on” experience in setting up a real-time data acquisition system specifically in grid-tied wind-solar power systems. Since Iowa's solar energy resources are higher in summer, this will provide an excellent complement to the load demand when summers are not windy.

Published in:

Modern Electric Power Systems (MEPS), 2010 Proceedings of the International Symposium

Date of Conference:

20-22 Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.