By Topic

Running Max/Min Filters Using 1+o(1) Comparisons per Sample

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hao Yuan ; Dept. of Comput. Sci., City Univ. of Hong Kong, Kowloon, China ; Atallah, Mikhail J.

A running max (or min) filter asks for the maximum or (minimum) elements within a fixed-length sliding window. The previous best deterministic algorithm (developed by Gil and Kimmel, and refined by Coltuc) can compute the 1D max filter using 1.5+o(1) comparisons per sample in the worst case. The best-known algorithm for independent and identically distributed input uses 1.25+o(1) expected comparisons per sample (by Gil and Kimmel). In this work, we show that the number of comparisons can be reduced to 1+o(1) comparisons per sample in the worst case. As a consequence of the new max/min filters, the opening (or closing) filter can also be computed using 1+o(1) comparisons per sample in the worst case, where the previous best work requires 1.5+o(1) comparisons per sample (by Gil and Kimmel); and computing the max and min filters simultaneously can be done in 2+o(1) comparisons per sample in the worst case, where the previous best work (by Lemire) requires three comparisons per sample. Our improvements over the previous work are asymptotic, that is, the number of comparisons is reduced only when the window size is large.

Published in:

Pattern Analysis and Machine Intelligence, IEEE Transactions on  (Volume:33 ,  Issue: 12 )