Cart (Loading....) | Create Account
Close category search window
 

Detecting Intrinsic Loops Underlying Data Manifold

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Deyu Meng ; Fac. of Sci. & Minist. of Educ. Key Lab. for Intell. Networks & Network Security, Xi''an Jiaotong Univ., Xi''an, China ; Yee Leung ; Zongben Xu

Detecting intrinsic loop structures of a data manifold is the necessary prestep for the proper employment of the manifold learning techniques and of fundamental importance in the discovery of the essential representational features underlying the data lying on the loopy manifold. An effective strategy is proposed to solve this problem in this study. In line with our intuition, a formal definition of a loop residing on a manifold is first given. Based on this definition, theoretical properties of loopy manifolds are rigorously derived. In particular, a necessary and sufficient condition for detecting essential loops of a manifold is derived. An effective algorithm for loop detection is then constructed. The soundness of the proposed theory and algorithm is validated by a series of experiments performed on synthetic and real-life data sets. In each of the experiments, the essential loops underlying the data manifold can be properly detected, and the intrinsic representational features of the data manifold can be revealed along the loop structure so detected. Particularly, some of these features can hardly be discovered by the conventional manifold learning methods.

Published in:

Knowledge and Data Engineering, IEEE Transactions on  (Volume:25 ,  Issue: 2 )

Date of Publication:

Feb. 2013

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.