Scheduled System Maintenance on December 17th, 2014:
IEEE Xplore will be upgraded between 2:00 and 5:00 PM EST (18:00 - 21:00) UTC. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

Best Effort SRLG Failure Protection for Optical WDM Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Xu Shao ; Inst. for Infocomm Res., Singapore, Singapore ; Yuebin Bai ; Xiaofei Cheng ; Yong-Kee Yeo
more authors

With the increase in the size and number of shared risk link groups (SRLGs) in optical wavelength-division multiplexing (WDM) networks, the capacity efficiency of shared-path protection becomes much poorer due to the SRLG-disjoint constraint, and thus the blocking probability becomes much higher. Furthermore, due to severe traps caused by SRLGs, it becomes more difficult to find an SRLG-disjoint backup path with trap avoidance within reasonable computational complexity. As a result, in a mesh WDM network with a large number of SRLGs or a large SRLG size, 100% SRLG failure protection is no longer a practical protection scheme. To solve this problem, we present a new protection scheme called best effort SRLG failure protection, in which we try to provide an SRLG-disjoint backup path by choosing the backup path sharing the least number of SRLGs with the working path; this is to make the impact of SRLG failures as low as possible and accept as many as possible connection requests. As a result, the proposed best effort SRLG failure protection scheme manages to make a trade-off between blocking probability and survivability. 100% SRLG failure protection becomes a special case of best effort SRLG failure protection when the working path and backup path share zero SRLG. Due to the NP-completeness of this problem, we propose a heuristic to find the optimal result of the best effort SRLG-disjoint backup path under dynamic traffic. We formulate the connection survivability against SRLG failures and analyze the possibility of backup sharing under best effort SRLG failure protection. Analytical and extensive simulation results with various network topology and SRLG parameters demonstrate that, compared with 100% SRLG failure protection, the proposed best effort SRLG failure protection scheme offers much better capacity efficiency and much lower blocking probability while keeping survivability as high as possible. This can be explained by the fact that by slightly loosing the SRL- - G-disjoint constraint, shared-path protection will become more capacity efficient and more efficient in overcoming traps.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:3 ,  Issue: 9 )