Cart (Loading....) | Create Account
Close category search window
 

Node Isolation Probability for Serial Ultraviolet UV-C Multi-hop Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Vavoulas, A. ; Dept. of Inf. & Telecommun., Univ. of Athens, Athens, Greece ; Sandalidis, H.G. ; Varoutas, D.

Non-line-of-sight optical wireless transmission, operated in the unlicensed ultraviolet UV-C band, has been recently suggested as an alternative means of communication. However, due to limited coverage, relayed UV-C networks need to be deployed in order to supply communication services at large distances. In this paper, we consider a serial multi-hop UV-C network where the nodes are distributed at fixed positions on a given service interval. We adopt a suitable path loss model and derive analytical expressions for the node isolation probability assuming on-off keying and pulse position modulation formats. Moreover, we investigate the node density required to achieve connectivity for several geometrical transceiver configurations. The numerical results of this paper are of significant value for telecom researchers working toward a flexible UV-C network deployment in practice.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:3 ,  Issue: 9 )

Date of Publication:

September 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.