By Topic

Secure Lossless Aggregation Over Fading and Shadowing Channels for Smart Grid M2M Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Bartoli, A. ; Centre Tecnol. de Telecomunicacions de Catalunya (CTTC), Castelldefels, Spain ; Hernandez-Serrano, J. ; Soriano, M. ; Dohler, M.
more authors

While security is generally perceived as an important constituent of communication systems, this paper offers a viable security-communication trade-off particularly tailored to smart grids. These systems, often composed of embedded nodes with highly constrained resources, require, e.g., metering data to be delivered efficiently while neither jeopardizing communication nor security. Data aggregation is a natural choice in such settings, where an additional challenge is to facilitate per-hop and end-to-end security as well as a mechanism to protect the valid nodes from exhaustion threats. The prime contribution of this paper is to include into the security design framework issues related to aggregation, wireless fading and shadowing channels, physical layer parameters (such as choice of modulation, packet length, channel coder), medium access control parameters (such as average number of transmissions), routing parameters (such as choice of route). Relying on analysis and corroborating simulations, unprecedented design guidelines are derived which determine the operational point beyond which aggregation is useful as well quantifying the superiority of our protocol enriched with a protection mechanism against nonintended packets (malicious or nonmalicious) w.r.t. nonaggregated and/or unsecured solutions.

Published in:

Smart Grid, IEEE Transactions on  (Volume:2 ,  Issue: 4 )