By Topic

Optimization of a Linear Superconducting Levitation System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Motta, E.S. ; Brazilian Nat. Nucl. Energy Comm. (CNEN), Rio de Janeiro, Brazil ; Dias, D.H.N. ; Sotelo, G.G. ; Ramos, H.O.C.
more authors

The Laboratory for Applied Superconductivity of the Federal University of Rio de Janeiro (LASUP) has been developing a superconducting magnetic levitation urban train named MagLev-Cobra. It is a kind of light rail vehicle where the conventional wheel-rail track is substituted by a rail of Ne-Fe-B magnets and carbon steel interacting with superconductor bulks installed in the vehicle to promote levitation. The main cost of this levitation system is the magnetic rail. Therefore, any improvement in the shape and configuration of magnets and iron has a significant budgetary impact. In this paper, the optimizations carried out with the feasible direction interior point algorithm, extensive search, and genetic algorithm of magnetic rails are presented. The objective is to find the geometry that minimizes the total cost, for a given levitation force, considering some practical restrictions. The levitation force restriction is calculated using a finite-element method. During the optimization process, the superconductor null permeability model is used. Finally, the results are checked with the Bean model and verified experimentally. Measurements of the levitation force and the field mapped over the magnetic rails are presented. Significant reduction of soft and hard ferromagnetic materials was reached.

Published in:

Applied Superconductivity, IEEE Transactions on  (Volume:21 ,  Issue: 5 )