By Topic

On Optimal Data Compression in Multiterminal Statistical Inference

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Amari, S.-I. ; RIKEN Brain Sci. Inst., Saitama, Japan

The multiterminal theory of statistical inference deals with the problem of estimating or testing the correlation of letters generated from two (or many) correlated information sources under the restriction of a certain transmission rate for each source. A typical example is two binary sources with joint probability p(x, y) where the correlation of x and y is to be tested or estimated. Given n iid observations xn = x1 ...xn and yn=y1 ...yn, only k = rn (0 <; r <; 1) bits each can be transmitted to a common destination. What is the optimal data compression for statistical inference? A simple idea is to send the first k letters of xn and yn. A simpler problem is the helper case where the optimal data compression of xn is searched for under the condition that all of yn are transmitted. It is a long standing problem to determine if there is a better data compression scheme than this simple scheme of sending first k letters. The present paper searches for the optimal data compression under the framework of linear-threshold encoding and shows that there is a better data compression scheme depending on the value of correlation. To this end, we evaluate the Fisher information in the class of linear-threshold compression schemes. It is also proved that the simple scheme is optimal when x and y are independent or their correlation is not too large.

Published in:

Information Theory, IEEE Transactions on  (Volume:57 ,  Issue: 9 )