Cart (Loading....) | Create Account
Close category search window
 

Human Perception-Based Data Reduction for Haptic Communication in Six-DoF Telepresence Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Sakr, N. ; Sch. of Inf. Technol. & Eng., Univ. of Ottawa, Ottawa, ON, Canada ; Georganas, Nicolas D. ; Jiying Zhao

In this paper, a human perception-based data reduction method is suggested to reduce the number of packets transmitted in 6-degrees-of-freedom (DoF) telehaptic systems; specifically in haptic-enabled telepresence. The algorithm relies on knowledge from human haptic perception in order to reduce the number of packets transmitted without compromising transparency. Several distance metrics are also discussed to best examine the acuity of human perception in detecting haptic distortion when data reduction is performed in 6-DoF settings. A validation of the proposed haptic data reduction technique is performed under normal network conditions as well as in the presence of network-induced time delay and packet loss. Statistical significance tests (using Friedman's nonparametric ANOVA, and Wilcoxon signed-rank tests) were carried out to determine the appropriate multivariate human haptic perceptual thresholds (force, torque, orientation, etc.) required to minimize the number of packets transmitted while preserving the immersiveness of the 6-DoF telehaptic environment. It was observed that the suggested algorithm can significantly reduce haptic data traffic with little or no influence on the quality of haptic-enabled telepresence interaction.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:60 ,  Issue: 11 )

Date of Publication:

Nov. 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.