By Topic

Sum-Product Based Optimization for Scalable Video Streams in Peer-to-Peer Mesh Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hossain, T. ; Dept. of EECS, Vanderbilt Univ., Nashville, TN, USA ; Yi Cui

Receiver heterogeneity of a P2P network can be effectively addressed by scalable video streams. Due to the discontinuous nature of scalable video, traditional convex-optimization approach is not applicable. We propose a message-passing based approach for optimization using the sum- product update algorithm. Advantage of this simple but elegant approach over other heuristic-based algorithm is that the optimization algorithm itself is independent of the underlying constraints. The algorithm iteratively updates layer allocation decision based on a given set of codewords. The codewords are binary representation of various network and video constraints. Therefore, any number of constraints can be used to generate a set of codewords without modifying the algorithm. To the best of our knowledge, this is the first work that systematically addresses the scalable video optimization problem. Preliminary simulation with up to 8 layers shows that the sum- product update process achieves an average layer delivery of 95% or higher.

Published in:

Computer Communications and Networks (ICCCN), 2011 Proceedings of 20th International Conference on

Date of Conference:

July 31 2011-Aug. 4 2011