By Topic

Measurement Matrix of Compressive Sensing Based on Gram-Schmidt Orthogonalization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Xiaofen Lin ; Dept..of Commun. Eng., Xiamen Univ., Xiamen, China ; Gang Lu ; Jingwen Yan ; Wei Lin

Measurement matrix plays an important part in sampling data and reconstructing signal in Compressive Sensing (CS). In this paper, the common measurement matrices and the relationship between measurement number of measurement matrix and signal sparsity are researched. The performance among the common measurement matrices is compared. In order to obtain a better reconstruction result, an improved method based on Gram-Schmidt orthogonalization of row vectors for matrix is proposed. The experiments show that the improved measurement matrix is better than the original measurement matrix when used to reconstruct signal.

Published in:

Image and Graphics (ICIG), 2011 Sixth International Conference on

Date of Conference:

12-15 Aug. 2011