By Topic

Learning Based Adaptive Denoising Approach for Image Interpolation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Zongliang Gan ; Coll. of Telecommun. & Inf. Eng., Nanjing Univ. of Posts & Telecommun., Nanjing, China ; Lina Qi ; Xiuchang Zhu

In this paper, we propose an effective image interpolation framework through learning based adaptive denoisng approach. In the local area, error pattern between original image and interpolated image is treated as stationary Gaussian distribution. Under the initial estimation, the proposed method apply the patch as the basic unit, in which Multiclass SVM classifier is used to determine iteration number and denoise parameters. There are two steps in iterative processing, including adaptive denoise and data fusion. Experiment results shown the proposed method can significantly improve the interpolated image quality both subjectively and objectively.

Published in:

Image and Graphics (ICIG), 2011 Sixth International Conference on

Date of Conference:

12-15 Aug. 2011