Cart (Loading....) | Create Account
Close category search window

Reliability of Clustered vs. Declustered Replica Placement in Data Storage Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Venkatesan, V. ; IBM Res. - Zurich, Zurich, Switzerland ; Iliadis, I. ; Fragouli, C. ; Urbanke, R.

The placement of replicas across storage nodes in a replication-based storage system is known to affect rebuild times and therefore system reliability. Earlier work has shown that, for a replication factor of two, the reliability is essentially unaffected by the replica placement scheme because all placement schemes have mean times to data loss (MTTDLs) within a factor of two for practical values of the failure rate, storage capacity, and rebuild bandwidth of a storage node. However, for higher replication factors, simulation results reveal that this no longer holds. Moreover, an analytical derivation of MTTDL becomes intractable for general placement schemes. In this paper, we develop a theoretical model that is applicable for any replication factor and provides a good approximation of the MTTDL for small failure rates. This model characterizes the system behavior by using an analytically tractable measure of reliability: the probability of the shortest path to data loss following the first node failure. It is shown that, for highly reliable systems, this measure approximates well the probability of all paths to data loss after the first node failure and prior to the completion of rebuild, and leads to a rough estimation of the MTTDL. The results obtained are of theoretical and practical importance and are confirmed by means of simulations. As our results show, the declustered placement scheme, contrary to intuition, offers a reliability for replication factors greater than two that does not decrease as the number of nodes in the system increases.

Published in:

Modeling, Analysis & Simulation of Computer and Telecommunication Systems (MASCOTS), 2011 IEEE 19th International Symposium on

Date of Conference:

25-27 July 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.