Cart (Loading....) | Create Account
Close category search window

A dual-layer user model based cognitive system for user-adaptive service robots

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seong-Yong Koo ; Dept. of Mech. Eng., Korea Adv. Inst. of Sci. & Technol. (KAIST), Daejeon, South Korea ; Kiru Park ; Hyun Kim ; Dong-Soo Kwon

This paper proposes a dual-layer user model to generate descriptive service recommendations for user-adaptive service robots. The user model represents user preferences as the associative memory in the bottom-layer and association rules in the top-layer. The learning and inference processes in the two layers, and the bottom-up rule extraction process, are explained. The proposed user model was applied to a user-adaptive coffee menu recommendation system, and the quantitative and qualitative performances of the user-adaptive and descriptive recommendation system were evaluated by comparison with non-descriptive and random recommendation methods.

Published in:


Date of Conference:

July 31 2011-Aug. 3 2011

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.