By Topic

An All-Optical Carrier Recovery Scheme for Access Networks With Simple ASK Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Schrenk, B. ; Photonics Commun. Res. Lab., Nat. Tech. Univ. of Athens, Athens, Greece ; Bakopoulos, P. ; Kehayas, E. ; Maziotis, A.
more authors

We theoretically investigate and experimentally demonstrate a scheme for all-optical carrier recovery in loopback access networks that avoids orthogonal or complex modulation formats for the downstream or upstream signals. The applied technique is based on a passive resonating circuit that is capable of recovering the optical carrier of the amplitude-shift-keyed downstream signal for remodulation with a reflective modulator as upstream transmitter enabling full-duplex 10 Gb/s operation. The scheme is compared with alternative pattern suppression techniques based on optical gain saturation and electro-optical feed-forward injection for the stringent requirements of next-generation access networks, namely, an extended loss budget and high upstream data rates. Operation at downstream modulation depths of ~3 dB is reported with the feed-forward approach, while higher modulation depths of up to 9 dB are demonstrated with the all-optical carrier recovery technique, for which the dependence on longer sequences of consecutive identical bits is investigated. Finally, the feasibility of the all-optical downstream cancelation technique for optical access networks is evaluated in a wavelength division multiplexed passive optical network, showing full-duplex transmission with margins of at least 9 dB.

Published in:

Optical Communications and Networking, IEEE/OSA Journal of  (Volume:3 ,  Issue: 9 )