Cart (Loading....) | Create Account
Close category search window
 

Monte Carlo simulation of the subsurface growth mode during pulsed laser deposition

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Rashidian Vaziri, M.R. ; Laser and Optics Research School, P.O. Box 14155-1339, Tehran, Iran ; Hajiesmaeilbaigi, F. ; Maleki, M.H.

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3624768 

The pulsed laser deposition (PLD) growth of aluminum (Al) metal in the presence of noble background gases is studied using a Monte Carlo model constructed on the basis of srim 2010 calculations. It is shown that Al ions are deposited with a high kinetic energy of about 100 eV. These high kinetic incident energies lead to the implantation of ions into the existing film and resputtering from its surface. The consequent film growth is in the subsurface or subplantation growth mode, in which the material does not grow on top of the already deposited film. It is proved that by considering the role of resputtering, which is neglected in other theoretical models of PLD, experimentally observed deviations from the stoichiometric growth of multicomponent materials and dips in thickness profiles of elemental materials at the film center can be explained. The calculated implantation depths are also consistent with the reported measured ones. Taking into account the role of sputtering yield in calculating the deposition rate of the material, and evaluating the mean number of produced vacancies inside the growing film, two different approaches are proposed for the optimal growth of materials in PLD. To obtain high quality thin films, one should use a noble gas that ensures higher mass ratios (the ratio of the ablated ion to the gas atomic masses) at higher pressures; however, to achieve the highest growth speeds, higher mass ratios at lower pressures are recommended.

Published in:

Journal of Applied Physics  (Volume:110 ,  Issue: 4 )

Date of Publication:

Aug 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.