By Topic

Set-membership constrained conjugate gradient adaptive filtering algorithm and its application to beamforming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Lei Wang ; Communications Research Group, Department of Electronics, University of York, YO10 5DD, UK ; Rodrigo C. de Lamare

We introduce a new linearly constrained minimum variance (LCMV) beamformer that combines the set-membership (SM) technique with the conjugate gradient (CG) method, and develop a low-complexity adaptive filtering algorithm for beamforming. The proposed algorithm utilizes a CG-based vector and a variable forgetting factor to perform the data-selective updates that are controlled by a time-varying bound related to the parameters. For the update, the CG-based vector is calculated iteratively (one iteration per update) to obtain the filter parameters and to avoid the matrix inversion. The resulting iterations construct a space of feasible solutions that satisfy the constraints of the LCMV optimization problem. The proposed algorithm reduces the computational complexity significantly and shows an enhanced convergence and tracking performance over existing algorithms.

Published in:

2011 17th International Conference on Digital Signal Processing (DSP)

Date of Conference:

6-8 July 2011