By Topic

Advanced statistical and adaptive threshold techniques for moving object detection and segmentation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Christodoulou, L. ; Dept. of Electr. Eng. & Inf. Technol., Cyprus Univ. of Technol., Cyprus ; Kasparis, T. ; Marques, O.

The current research project proposes advanced statistical and adaptive threshold techniques for video object detection and segmentation. We present new statistical adaptive threshold techniques to show the advantages, and how these algorithms overcome the limitations and the technical challenges for object motion detection. The algorithm utilizes statistical quantities such as mean, standard deviation, and variance to define a new adaptive and automatic threshold based on two-frame and three-frame differencing. The proposed algorithms were compared with classic statistical thresholding methods on a testing video for human motion detection, and the experimental results show the effectiveness of the algorithms. Furthermore this research shows an evaluation and comparison among all statistical and adaptive algorithms and proves the benefits of the proposed algorithm.

Published in:

Digital Signal Processing (DSP), 2011 17th International Conference on

Date of Conference:

6-8 July 2011