Cart (Loading....) | Create Account
Close category search window
 

A Bayesian Hierarchical Framework for Multitarget Labeling and Correspondence With Ghost Suppression Over Multicamera Surveillance System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Ching-Chun Huang ; Dept. of Electr. Eng., Nat. Kaohsiung Univ. of Appl. Sci., Kaohsiung, Taiwan ; Sheng-Jyh Wang

In this paper, the main purpose is to locate, label, and correspond multiple targets with the capability of ghost suppression over a multicamera surveillance system. In practice, the challenges come from the unknown target number, the interocclusion among targets, and the ghost effect caused by geometric ambiguity. Instead of directly corresponding objects among different camera views, the proposed framework adopts a fusion-inference strategy. In the fusion stage, we formulate a posterior distribution to indicate the likelihood of having some moving targets at certain ground locations. Based on this distribution, a systematic approach is proposed to construct a rough scene model of the moving targets. In the inference stage, the scene model is inputted into a proposed Bayesian hierarchical detection framework, where the target labeling, target correspondence, and ghost removal are regarded as a unified optimization problem subject to 3-D scene priors, target priors, and foreground detection results. Moreover, some target priors, such as target height, target width, and the labeling results are iteratively refined based on an expectation-maximization (EM) mechanism to further boost system performance. Experiments over real videos verify that the proposed system can systematically determine the target number, efficiently label moving targets, precisely locate their 3-D locations, and effectively tackle the ghost problem.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:9 ,  Issue: 1 )

Date of Publication:

Jan. 2012

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.