By Topic

A Sparsification Approach to Set Membership Identification of Switched Affine Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ozay, N. ; Dept. of Comput. & Math. Sci., California Inst. of Technol., Pasadena, CA, USA ; Sznaier, M. ; Lagoa, C.M. ; Camps, O.I.

This paper addresses the problem of robust identification of a class of discrete-time affine hybrid systems, switched affine models, in a set membership framework. Given a finite collection of noisy input/output data and some minimal a priori information about the set of admissible plants, the objective is to identify a suitable set of affine models along with a switching sequence that can explain the available experimental information, while minimizing either the number of switches or subsystems. For the case where it is desired to minimize the number of switches, the key idea of the paper is to reduce this problem to a sparsification form, where the goal is to maximize sparsity of a suitably constructed vector sequence. Our main result shows that in the case of ℓ bounded noise, this sparsification problem can be exactly solved via convex optimization. In the general case where the noise is only known to belong to a convex set N, the problem is generically NP-hard. However, as we show in the paper, efficient convex relaxations can be obtained by exploiting recent results on sparse signal recovery. Similarly, we present both a sparsification formulation and a convex relaxation for the (known to be NP hard) case where it is desired to minimize the number of subsystems. These results are illustrated using two non-trivial problems arising in computer vision applications: video-shot and dynamic texture segmentation.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 3 )