By Topic

RISE-Based Adaptive Control of a Control Affine Uncertain Nonlinear System With Unknown State Delays

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sharma, N. ; Dept. of Physiol., Univ. of Alberta, Edmonton, AB, Canada ; Bhasin, S. ; Qiang Wang ; Dixon, W.E.

A continuous robust adaptive control method is designed for a class of uncertain nonlinear systems with unknown constant time-delays in the states. Specifically, a robust adaptive control method and a delay-free gradient-based desired compensation adaptation law (DCAL) are utilized to compensate for unknown time-delays, linearly parameterizable uncertainties, and additive bounded disturbances for a general nonlinear system. Despite these disturbances, a Lyapunov Krasovskii-based analysis is used to conclude that the system output asymptotically tracks a desired time varying bounded trajectory.

Published in:

Automatic Control, IEEE Transactions on  (Volume:57 ,  Issue: 1 )