By Topic

Visual Clustering of Spam Emails for DDoS Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Mao Lin Huang ; Sch. of Software, Univ. of Technol., Sydney, NSW, Australia ; Jinson Zhang ; Quang Vinh Nguyen ; Junhu Wang

Networking attacks embedded in spam emails are increasingly becoming numerous and sophisticated in nature. Hence this has given a growing need for spam email analysis to identify these attacks. The use of these intrusion detection systems has given rise to other two issues, 1) the presentation and understanding of large amounts of spam emails, 2) the user-assisted input and quantified adjustment during the analysis process. In this paper we introduce a new analytical model that uses two coefficient vectors: 'density' and 'weight'for the analysis of spam email viruses and attacks. We then use a visual clustering method to classify and display the spam emails. The visualization allows users to interactively select and scale down the scope of views for better understanding of different types of the spam email attacks. The experiment shows that this new model with the clustering visualization can be effectively used for network security analysis.

Published in:

2011 15th International Conference on Information Visualisation

Date of Conference:

13-15 July 2011