By Topic

Control Method for Wireless Inductive Energy Transfer Systems With Relatively Large Air Gap

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
van der Pijl, F. ; Electr. Sustainable Power Dept., Delft Univ. of Technol., Delft, Netherlands ; Bauer, P. ; Castilla, M.

Recent improvements in semiconductor technology make efficient switching possible at higher frequencies, which benefits the application of wireless inductive energy transfer. However, a higher frequency does not alter the magnetic coupling between energy transmitter and receiver. Due to the still weak magnetic coupling between transmitting and receiving sides that are separated by a substantial air gap, energy circulates in the primary transmitting side without being transferred to the secondary receiving side. This paper introduces an energy control method that reduces energy circulation in the primary to zero. The method makes use of the fact that energy can be stored in a magnetic field by the primary side and absorbed by the secondary side. Furthermore, the secondary side converter topology is modified in order to boost the damping as seen by the primary converter at required times. Essentially, the control method realizes an energetic coupling factor of one between the air coils of the wireless transformer. The working principle of the control method has been verified with an experimental setup.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:60 ,  Issue: 1 )