By Topic

A Widely Linear Complex Unscented Kalman Filter

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dini, D.H. ; Imperial Coll. London, London, UK ; Mandic, D.P. ; Julier, S.J.

Conventional complex valued signal processing algorithms assume rotation invariant (circular) signal distributions, and are thus suboptimal for real world processes which exhibit rotation dependent distributions (noncircular). In nonlinear sequential state space estimation, noncircularity can arise from the data, state transition model, and state and observation noises. We provide further insight by revisiting the augmented complex unscented Kalman filter (ACUKF) and illuminating its operation in such scenarios. The analysis establishes a relationship between the estimation error and the degree of second order noncircularity (improperness) in the system for the conventional complex unscented Kalman filter (CUKF), and is supported by simulations on both synthetic and real world proper and improper signals.

Published in:

Signal Processing Letters, IEEE  (Volume:18 ,  Issue: 11 )