By Topic

Body Sensor Networks: A Holistic Approach From Silicon to Users

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

11 Author(s)
Calhoun, B.H. ; Dept. of Electr. & Comput. Eng., Univ. of Virginia, Charlottesville, VA, USA ; Lach, J. ; Stankovic, J. ; Wentzloff, D.D.
more authors

Body sensor networks (BSNs) are emerging cyber-physical systems that promise to improve quality of life through improved healthcare, augmented sensing and actuation for the disabled, independent living for the elderly, and reduced healthcare costs. However, the physical nature of BSNs introduces new challenges. The human body is a highly dynamic physical environment that creates constantly changing demands on sensing, actuation, and quality of service (QoS). Movement between indoor and outdoor environments and physical movements constantly change the wireless channel characteristics. These dynamic application contexts can also have a dramatic impact on data and resource prioritization. Thus, BSNs must simultaneously deal with rapid changes to both top-down application requirements and bottom-up resource availability. This is made all the more challenging by the wearable nature of BSN devices, which necessitates a vanishingly small size and, therefore, extremely limited hardware resources and power budget. Current research is being performed to develop new principles and techniques for adaptive operation in highly dynamic physical environments, using miniaturized, energy-constrained devices. This paper describes a holistic cross-layer approach that addresses all aspects of the system, from low-level hardware design to higher level communication and data fusion algorithms, to top-level applications.

Published in:

Proceedings of the IEEE  (Volume:100 ,  Issue: 1 )