By Topic

Blind source separation of nonlinearly mixed ocean acoustic signals using Slow Feature Analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Suraj Kamal ; Department of Electronics, Cochin University of Science & Technology, Kochi - 682 022, Kerala, India ; M. H. Supriya ; P. R. Saseendran Pillai

The ocean acoustic environment is astoundingly complex, consisting of numerous noise sources like ships, offshore oil rigs, marine life, shore waves and acoustic cavitations, featuring varying sound speed profiles, multi-path interferences, as well as other hydrodynamic phenomena. Irrespective of the type of the receiver system, whether active or passive, the signals picked up by the hydrophones are disturbed by these inherent anomalies of the propagating medium and poses a prime challenge to extract useful information from the chaotic mixtures of received signals. Blind Source Separation (BSS), an engineering paradigm which attempts to mimic the human cognitive capability of selectively extracting an interesting process amidst several similar competing processes, can be considered as a viable solution to the problem. In this paper, the effectiveness of Slow Feature Analysis (SFA) algorithm (Laurenz Wiskott, a biologically motivated technique based on the concept of temporal slowness to extract invariant features from multivariate time series, for solving the problem of nonlinear BSS is investigated. A testing framework for underwater acoustic signal separation has been developed in Python with the aid of Modular toolkit for Data Processing (MDP), a stack of general purpose machine learning algorithms.

Published in:

OCEANS 2011 IEEE - Spain

Date of Conference:

6-9 June 2011