By Topic

Weighted Centroid Localization Algorithm: Theoretical Analysis and Distributed Implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jun Wang ; Dept. of Electr. Eng., Univ. of California, Los Angeles, CA, USA ; Urriza, P. ; Yuxing Han ; Cabric, D.

Information about primary transmitter location is crucial in enabling several key capabilities in cognitive radio networks, including improved spatio-temporal sensing, intelligent location-aware routing, as well as aiding spectrum policy enforcement. Compared to other proposed non-interactive localization algorithms, the weighted centroid localization (WCL) scheme uses only the received signal strength information, which makes it simple to implement and robust to variations in the propagation environment. In this paper we present the first theoretical framework for WCL performance analysis in terms of its localization error distribution parameterized by node density, node placement, shadowing variance, correlation distance and inaccuracy of sensor node positioning. Using this analysis, we quantify the robustness of WCL to various physical conditions and provide design guidelines, such as node placement and spacing, for the practical deployment of WCL. We also propose a power-efficient method for implementing WCL through a distributed cluster-based algorithm, that achieves comparable accuracy with its centralized counterpart.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 10 )