By Topic

Secure Resource Allocation and Scheduling for OFDMA Decode-and-Forward Relay Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ng, D.W.K. ; Dept. of Electr. & Comput. Eng., Univ. of British Columbia, Vancouver, BC, Canada ; Lo, E.S. ; Schober, R.

In this paper, we formulate an optimization problem for secure resource allocation and scheduling in orthogonal frequency division multiple access (OFDMA) half-duplex decode-and-forward (DF) relay assisted networks. Our problem formulation takes into account artificial noise generation to combat a passive multiple antenna eavesdropper and the effects of imperfect channel state information at the transmitter (CSIT) in slow fading. The optimization problem is solved by dual decomposition which results in a highly scalable distributed iterative resource allocation algorithm. The packet data rate, secrecy data rate, power, and subcarrier allocation policies are optimized to maximize the average secrecy outage capacity (bit/s/Hz securely and successfully delivered to the users via relays). Simulation results illustrate that our proposed distributed iterative algorithm converges to the optimal solution in a small number of iterations and guarantees a non-zero secrecy data rate for given target secrecy outage and channel outage probability requirements.

Published in:

Wireless Communications, IEEE Transactions on  (Volume:10 ,  Issue: 10 )