By Topic

A data-aware workflow scheduling algorithm for heterogeneous distributed systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dengpan Yin ; Department of Computer Science, Louisiana State University, Baton Rouge, LA 70803 ; Tevfik Kosar

The workflow scheduling problem in heterogeneous distributed systems is hard to solve due to both intermediate data transfer time and the computation time for each task being considered. The heterogeneity of the computing power of distributed computational sites and the band width between them makes the scheduling problem challenging. In this study, we improve a heuristic-based data-aware algorithm to find the optimal scheduling so that the turnaround time of the workflow is minimized. Our improved algorithm outperforms the existing algorithms in both performance and time efficiency in most cases. We also extend our algorithm to solve the co-scheduling problem. In this problem, each task of the workflow can request data from a remote data site before its execution; and also store important intermediate data to a remote data site after the execution. The results show that the turnaround time of the workflow can be shortened significantly using our data-aware algorithm compared to the existing optimal algorithms.

Published in:

High Performance Computing and Simulation (HPCS), 2011 International Conference on

Date of Conference:

4-8 July 2011