By Topic

Numerical and Experimental Investigation of Grounding Electrode Impulse-Current Dispersal Regularity Considering the Transient Ionization Phenomenon

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Jingli Li ; State Key Lab. of Power Transm. Equip. & Syst. Safety & New Technol., Chongqing Univ., Chongqing, China ; Tao Yuan ; Qing Yang ; Wenxia Sima
more authors

This paper presents a numerical method, combined the finite element method in the spatial domain with the finite difference time domain, to calculate the transient impulse response of grounding systems considering the ionization phenomenon. In this numerical method, space-time variable soil resistivity is used to simulate the soil ionization phenomenon where soil resistivity is controlled according to its relationship with the local instantaneous value of the electric field and no a priori hypothesis on the geometrical shape of the ionized region around the electrodes is necessary. Based on the widely accepted principle of dimensional similarity, this paper makes simulated experimental investigations on the impulse-current dispersal regularity of grounding electrodes with various structures. The proposed numerical scheme is validated by comparing computed results with experimental results and simulation results in literature. Based on the measurement and simulation results, the impulse response regularity of grounding electrodes is discussed and the effect of ionization on human and installations safety is reported.

Published in:

Power Delivery, IEEE Transactions on  (Volume:26 ,  Issue: 4 )