By Topic

RRED Indices: Reduced Reference Entropic Differencing for Image Quality Assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Soundararajan, R. ; Dept. of Electr. & Comput. Eng., Univ. of Texas at Austin, Austin, TX, USA ; Bovik, A.C.

We study the problem of automatic “reduced-reference” image quality assessment (QA) algorithms from the point of view of image information change. Such changes are measured between the reference- and natural-image approximations of the distorted image. Algorithms that measure differences between the entropies of wavelet coefficients of reference and distorted images, as perceived by humans, are designed. The algorithms differ in the data on which the entropy difference is calculated and on the amount of information from the reference that is required for quality computation, ranging from almost full information to almost no information from the reference. A special case of these is algorithms that require just a single number from the reference for QA. The algorithms are shown to correlate very well with subjective quality scores, as demonstrated on the Laboratory for Image and Video Engineering Image Quality Assessment Database and the Tampere Image Database. Performance degradation, as the amount of information is reduced, is also studied.

Published in:

Image Processing, IEEE Transactions on  (Volume:21 ,  Issue: 2 )