Cart (Loading....) | Create Account
Close category search window
 

Multiobjective output-feedback control via LMI optimization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Scherer, C. ; Dept. of Mech. Eng. Syst., Delft Univ. of Technol., Netherlands ; Gahinet, P. ; Chilali, M.

This paper presents an overview of a linear matrix inequality (LMI) approach to the multiobjective synthesis of linear output-feedback controllers. The design objectives can be a mix of H performance, H2 performance, passivity, asymptotic disturbance rejection, time-domain constraints, and constraints on the closed-loop pole location. In addition, these objectives can be specified on different channels of the closed-loop system. When all objectives are formulated in terms of a common Lyapunov function, controller design amounts to solving a system of linear matrix inequalities. The validity of this approach is illustrated by a realistic design example

Published in:

Automatic Control, IEEE Transactions on  (Volume:42 ,  Issue: 7 )

Date of Publication:

Jul 1997

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.