By Topic

A hybrid Spiking Neural Network model for multivariate data classification and visualization

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ming Leong Yii ; Department of Cognitive Science, Faculty of Cognitive Sciences and Human Development, Universiti Malaysia Sarawak, 94300, Kota Samarahan, Sarawak, Malaysia ; Chee Siong The ; Chwen Jen Chen

This study proposes a hybrid model of Self-Organizing Map with modified adaptive coordinates (SOM-AC) and Spiking Neural Network (SNN) for multivariate spatial and temporal data visualization and classification. SOM is one of the most prominent unsupervised learning algorithms. Recently, many extensions for SOM have been proposed for temporal processing. However, none of the extensions uses spikes as means of information processing. SNN has potential for qualitative advancements in both biological relevancy and computational power. Therefore, this hybrid learning model is proposed to harness the advantages of both SOM-AC and SNN to produce intuitive multivariate data classification and visualization. Empirical studies of the hybrid model using synthetic and benchmarking datasets yielded promising classification accuracy and intuitive rich visualization.

Published in:

Information Technology in Asia (CITA 11), 2011 7th International Conference on

Date of Conference:

12-13 July 2011