By Topic

Template-based semi-automatic workflow construction for gene expression data analysis

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Belohradsky, J. ; Czech Tech. Univ., Prague, Czech Republic ; Monge, D. ; Zelezny, F. ; Holec, M.
more authors

We propose a technique for semi-automatic construction of gene expression data analysis workflows by grammar-like inference based on predefined workflow templates. The templates represent routinely used sequences of procedures such as normalization, data transformation, classifier learning, etc. Variations of such workflows (such as different instantiations to specific algorithms) may entail significant variance in the quality of the analysis results and our formalism enables to automatically explore such variations. Adhering to proven templates helps preserve the sanity of explored workflows and prevents the combinatorial explosion encountered by fully automatic workflow planners. Here we propose the basic principles of template-based workflow construction and demonstrate their working in the publicly available tool XGENE.ORG for multi-platform gene expression analysis.

Published in:

Computer-Based Medical Systems (CBMS), 2011 24th International Symposium on

Date of Conference:

27-30 June 2011