By Topic

Improved Network-Coded Cooperative Transmission with Low-Complexity Adaptation to Wireless Channels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Dongsik Kim ; Department of Electrical Engineering, Pohang University of Science and Technology (POSTECH), Pohang 790-784, Korea ; Hyun-Myung Kim ; Gi-Hong Im

The relay employs network coding to transmit the packets from the source nodes simultaneously, for increasing spectral efficiency in wireless environments. The cooperative transmission based on network coding usually works on decode-and-forward (DF) protocols. However, detection errors at the relay cause error propagation, which degrades the performance of cooperative communications. To overcome this problem, we model the error propagation effect of the DF-based system at the destination as the addition of virtual noise, and then design a low complexity detection method. We derive the achievable diversity gain to evaluate the proposed model and corresponding detection scheme. To extend the proposed model to network-coded systems, we first express the channel conditions between the sources and relay as a single equivalent channel gain. Then, we develop low complexity detection schemes for the network-coded systems. From the error propagation model, we propose a dual mode network coding technique, which exploits different network coding schemes adaptively according to channel qualities. Simulation results show that the proposed model and detection scheme effectively reduce the error propagation effects. Also, the proposed dual mode network coding has gains for all channel conditions and thus gives better BER performance than conventional methods.

Published in:

IEEE Transactions on Communications  (Volume:59 ,  Issue: 10 )