By Topic

Fastmap: a fast, approximate maximum a posteriori probability parameter estimator with application to robust matched-field processing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
B. F. Harrison ; Naval Underwater Syst. Center, Newport, RI, USA ; R. J. Vaccaro ; D. W. Tufts

In many estimation problems, the set of unknown parameters can be divided into a subset of desired parameters and a subset of nuisance parameters. Using a maximum a posteriori (MAP) approach to parameter estimation, these nuisance parameters are integrated out in the estimation process. This can result in an extremely computationally-intensive estimator. This paper proposes a method by which computationally-intensive integrations over the nuisance parameters required in Bayesian estimation may be avoided under certain conditions. The proposed method is an approximate MAP estimator which is much more computationally efficient than direct, or even Monte Carlo, integration of the joint posteriori distribution of the desired and nuisance parameters. As an example of its efficiency, we apply the fast algorithm to matched-field source localization in an uncertain environment

Published in:

Acoustics, Speech, and Signal Processing, 1997. ICASSP-97., 1997 IEEE International Conference on  (Volume:1 )

Date of Conference:

21-24 Apr 1997