By Topic

Ontology-based indexing of annotated images using semantic DNA and vector space model

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Fadzli, S.A. ; Fac. of Inf., Univ. Sultan Zainal Abidin, Kuala Terengganu, Malaysia ; Setchi, R.

The study presented in this paper focuses on the preprocessing stage of image retrieval by proposing an ontology-based indexing approach which captures the meaning of image annotations by extracting the semantic importance of the words in them. The indexing algorithm is based on the classic vector-space model that is adapted by employing index weighting and a word sense disambiguation. It uses sets of Semantic DNA, extracted from a lexical ontology, to represent the images in a vector space. As discussed in the paper, the use of Semantic DNA in text-based image retrieval aims to overcome some of the major drawbacks of well known traditional approaches such as `bags of words' and term frequency-(TF) based indexing. The proposed approach is evaluated by comparing the indexing achieved using the proposed semantic algorithm with results obtained using a traditional TF-based indexing in vector space model (VSM) with singular value decomposition (SVD) technique. The experimental results show that the proposed ontology-based approach generates a better-quality index which captures the conceptual meaning of the image annotations.

Published in:

Semantic Technology and Information Retrieval (STAIR), 2011 International Conference on

Date of Conference:

28-29 June 2011