Cart (Loading....) | Create Account
Close category search window
 

Discrete-continuous optimization for large-scale structure from motion

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Crandall, D. ; Indiana Univ., Bloomington, IN, USA ; Owens, A. ; Snavely, N. ; Huttenlocher, D.

Recent work in structure from motion (SfM) has successfully built 3D models from large unstructured collections of images downloaded from the Internet. Most approaches use incremental algorithms that solve progressively larger bundle adjustment problems. These incremental techniques scale poorly as the number of images grows, and can drift or fall into bad local minima. We present an alternative formulation for SfM based on finding a coarse initial solution using a hybrid discrete-continuous optimization, and then improving that solution using bundle adjustment. The initial optimization step uses a discrete Markov random field (MRF) formulation, coupled with a continuous Levenberg-Marquardt refinement. The formulation naturally incorporates various sources of information about both the cameras and the points, including noisy geotags and vanishing point estimates. We test our method on several large-scale photo collections, including one with measured camera positions, and show that it can produce models that are similar to or better than those produced with incremental bundle adjustment, but more robustly and in a fraction of the time.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.