By Topic

From partial shape matching through local deformation to robust global shape similarity for object detection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tianyang Ma ; Dept. of Computer and Information Sciences, Temple University, Philadelphia, USA ; Longin Jan Latecki

In this paper, we propose a novel framework for contour based object detection. Compared to previous work, our contribution is three-fold. 1) A novel shape matching scheme suitable for partial matching of edge fragments. The shape descriptor has the same geometric units as shape context but our shape representation is not histogram based. 2) Grouping of partial matching hypotheses to object detection hypotheses is expressed as maximum clique inference on a weighted graph. 3) A novel local affine-transformation to utilize the holistic shape information for scoring and ranking the shape similarity hypotheses. Consequently, each detection result not only identifies the location of the target object in the image, but also provides a precise location of its contours, since we transform a complete model contour to the image. Very competitive results on ETHZ dataset, obtained in a pure shape-based framework, demonstrate that our method achieves not only accurate object detection but also precise contour localization on cluttered background.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011