Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

2D nonrigid partial shape matching using MCMC and contour subdivision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yu Cao ; Dept. of Comput. Sci. & Eng., Univ. of South Carolina, Columbia, SC, USA ; Zhiqi Zhang ; Czogiel, I. ; Dryden, I.
more authors

Shape matching has many applications in computer vision, such as shape classification, object recognition, object detection, and localization. In 2D cases, shape instances are 2D closed contours and matching two shape contours can usually be formulated as finding a one-to-one dense point correspondence between them. However, in practice, many shape contours are extracted from real images and may contain partial occlusions. This leads to the challenging partial shape matching problem, where we need to identify and match a subset of segments of the two shape contours. In this paper, we propose a new MCMC (Markov chain Monte Carlo) based algorithm to handle partial shape matching with mildly non-rigid deformations. Specifically, we represent each shape contour by a set of ordered landmark points. The selection of a subset of these landmark points into the shape matching is evaluated and updated by a posterior distribution, which is composed of both a matching likelihood and a prior distribution. This prior distribution favors the inclusion of more and consecutive landmark points into the matching. To better describe the matching likelihood, we develop a contour-subdivision technique to highlight the contour segment with highest matching cost from the selected subsequences of the points. In our experiments, we construct 1,600 test shape instances by introducing partial occlusions to the 40 shapes chosen from different categories in MPEG-7 dataset. We evaluate the performance of the proposed algorithm by comparing with three well-known partial shape matching methods.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011