Cart (Loading....) | Create Account
Close category search window
 

Estimating Motion and size of moving non-line-of-sight objects in cluttered environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Pandharkar, R. ; MIT Media Lab., Cambridge, MA, USA ; Velten, A. ; Bardagjy, A. ; Lawson, E.
more authors

We present a technique for motion and size estimation of non-line-of-sight (NLOS) moving objects in cluttered environments using a time of flight camera and multipath analysis. We exploit relative times of arrival after reflection from a grid of points on a diffuse surface and create a virtual phased-array. By subtracting space-time impulse responses for successive frames, we separate responses of NLOS moving objects from those resulting from the cluttered environment. After reconstructing the line-of-sight scene geometry, we analyze the space of wavefronts using the phased array and solve a constrained least squares problem to recover the NLOS target location. Importantly, we can recover target's motion vector even in presence of uncalibrated time and pose bias common in time of flight systems. In addition, we compute the upper bound on the size of the target by backprojecting the extremas of the time profiles. Ability to track targets inside rooms despite opaque occluders and multipath responses has numerous applications in search and rescue, medicine and defense. We show centimeter accurate results by making appropriate modifications to a time of flight system.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.