By Topic

Image annotation using bi-relational graph of images and semantic labels

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hua Wang ; Dept. of Comput. Sci. & Eng., Univ. of Texas at Arlington, Arlington, TX, USA ; Heng Huang ; Ding, C.

Image annotation is usually formulated as a multi-label semi-supervised learning problem. Traditional graph-based methods only utilize the data (images) graph induced from image similarities, while ignore the label (semantic terms) graph induced from label correlations of a multi-label image data set. In this paper, we propose a novel Bi-relational Graph (BG) model that comprises both the data graph and the label graph as subgraphs, and connect them by an additional bipartite graph induced from label assignments. By considering each class and its labeled images as a semantic group, we perform random walk on the BG to produce group-to-vertex relevance, including class-to-image and class-to-class relevances. The former can be used to predict labels for unannotated images, while the latter are new class relationships, called as Causal Relationships (CR), which are asymmetric. CR is learned from input data and has better semantic meaning to enhance the label prediction for unannotated images. We apply the proposed approaches to automatic image annotation and semantic image retrieval tasks on four benchmark multi-label image data sets. The superior performance of our approaches compared to state-of-the-art multi-label classification methods demonstrate their effectiveness.

Published in:

Computer Vision and Pattern Recognition (CVPR), 2011 IEEE Conference on

Date of Conference:

20-25 June 2011